skip to main content


Search for: All records

Creators/Authors contains: "Leite, Marina S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While there are several bottlenecks in hybrid organic–inorganic perovskite (HOIP) solar cell production steps, including composition screening, fabrication, material stability, and device performance, machine learning approaches have begun to tackle each of these issues in recent years. Different algorithms have successfully been adopted to solve the unique problems at each step of HOIP development. Specifically, high-throughput experimentation produces vast amount of training data required to effectively implement machine learning methods. Here, we present an overview of machine learning models, including linear regression, neural networks, deep learning, and statistical forecasting. Experimental examples from the literature, where machine learning is applied to HOIP composition screening, thin film fabrication, thin film characterization, and full device testing, are discussed. These paradigms give insights into the future of HOIP solar cell research. As databases expand and computational power improves, increasingly accurate predictions of the HOIP behavior are becoming possible.

     
    more » « less
  2. The fixed post-manufacturing properties of metal-based photonic devices impose limitations on their adoption in dynamic photonics. Modulation approaches currently available (e.g. mechanical stressing or electrical biasing) tend to render the process cumbersome or energy-inefficient. Here we demonstrate the promise of utilizing magnesium (Mg) in achieving optical tuning in a simple and controllable manner: etching in water. We revealed an evident etch rate modulation with the control of temperature and structural dimensionality. Further, our numerical calculations demonstrate the substantial tuning range of optical resonances spanning the entire visible frequency range with the etching-induced size reduction of several archetypal plasmonic nanostructures. Our work will help to guide the rational design and fabrication of bio-degradable photonic devices with easily tunable optical responses and minimal power footprint.

     
    more » « less
  3. The plasmon resonance of a structure is primarily dictated by its optical properties and geometry, which can be modified to enable hot-carrier photodetectors with superior performance. Recently, metal alloys have played a prominent role in tuning the resonance of plasmonic structures through chemical composition engineering. However, it has been unclear how alloying modifies the time dynamics of the generated hot-carriers. In this work, we elucidate the role of chemical composition on the relaxation time of hot-carriers for the archetypal AuxAg1−xthin film system. Through time-resolved optical spectroscopy measurements in the visible wavelength range, we measure composition-dependent relaxation times that vary up to 8× for constant pump fluency. Surprisingly, we find that the addition of 2% of Ag into Au films can increase the hot-carrier lifetime by approximately 35% under fixed fluence, as a result of a decrease in optical loss. Further, the relaxation time is found to be inversely proportional to the imaginary part of the permittivity. Our results indicate that alloying is a promising approach to effectively control hot-carrier relaxation time in metals.

     
    more » « less
  4. Abstract

    Structural color filters have recently blossomed as a superior alternative to organic dyes or chemical pigments owing to their remarkable durability and compactness. With appropriate design, nanostructure‐induced photonic or plasmonic resonance modes can give rise to either enhancement in transmission or suppression in the reflection within specific wavelength ranges in the optical regime, generating distinctive colors. However, the static optical properties due to fixed structural geometry and size after fabrication hinder their deployment in many cutting‐edge technologies requiring adaptive complexion changes. Here, a multilayer thin film‐based color filter incorporating Mg and MgO, earth‐abundant and biodegradable materials, is devised. The devices display vivid hues spanning a broad gamut via the control of the film thickness. They also exhibit minimal color changes with varying angle views up to 40°–50°. Moreover, the tones fade away instantly upon immersion in water and then progressively transition to a different hue with the complete removal of the Mg‐containing layers, realizing transient color responses. This approach holds great promise for alternative pixels with irreversible color‐change capability as well as zero‐power consumption and low cost, while making use of biodegradable materials.

     
    more » « less